

Company Profile 2018 Product Gatalogue

1

Contents

<i>A</i> .	Product Range Page 3-4
В.	Rough Machining Page 5-6
<i>C</i> .	Final Machining Page 7-8
D.	Quality Control
Е.	Product Range
F.	Physical and Mechanical Properties of Aluminum BronzesPage 12
G.	Physical and Mech.Properties of High Conductivity CoppersPage 12
Н.	Technical Data Sheets of Aluminum BronzesPage 13-16
İ.	Technical Data Sheets of High Conductivity Copper AlloysPage 17-20
J.	Casting Methods Page 20
К.	Transformation Methods Page 20

A. Company Profile

We have a good experience in high conductivity copper alloys and aluminum bronzes. We export our goods to all over the world without any quality problem. We guarantee our products to be free of porosity & imperfections. We can supply the centrifugally casted rings, continuous casted round bars and forged plates, discs in a short period with our high technology.

You will find below our standard processes & testing methods before delivery;

- • Chemical Analyze
- • Dimension Control
- Hardness Test
- • Ultrasonic Test
- • Penetration Test
- Physical Analyze (if required)

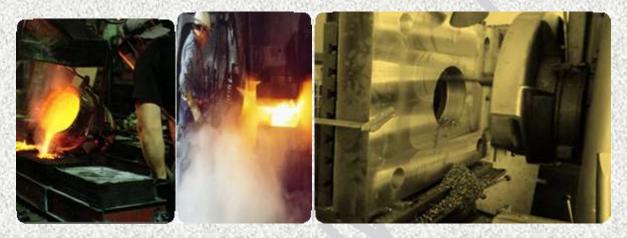
Aluminum Bronzes & TRONA METAL

TRONA is the candidate about leading Hard Bronze supplier of Stainless Steel Sink, Drawing Industry and Aluminum Bronze supplier of several industries in all over the world. By supporting our quality with just in time deliveries we'll become the main supplier of sink, kettle, pressure cooker, pot, cooking hob, service tray etc. manufacturers. We can answer all of our customers' requirements easily by our high production capacity. Approximately 50 tons of our production is ready to use at Sink Industry every month.

High Conductivity Copper Alloys & TRONA METAL

Trona is a supplier of High Conductivity Copper Alloys as plates mould materials for Gravity Die-Casting process, Round Bars for Aluminum Injection, Rings and Plates for Plastic Injection and Automotive Industry, Discs and Round Bars for Welding Industry. We are supplying our best quality mould materials to major faucet manufacturers, plunger tips to aluminum injection, hanger, bucket and euro pallet moulds etc to plastic injection in all over the world. Our Copper Beryllium Moulds are being used in the several sectors with high satisfaction. All of our pieces are delivered with 3.1B full material certificate to the customers.

What makes us special?

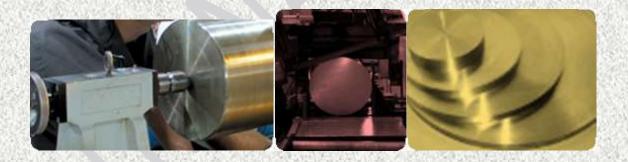

- Long Life and High Technologic Materials
- Quick Delivery Time
- • A good correlation of high quality and suitable prices
- • Rough machining with 2mm tolerances to the final dimensions
- • Final machining possibility
- Both sides working surface quality for sink moulds (if required)
- Forged material for longer life time for sink moulds (if required)
- Many items from one shop: hard bronzes and its final machining, welding wheels, welding jigs, bronze bushings for the presses etc...

B. Rough Machining;

a. Aluminum Bronzes

i. <u>Sand or Die Casted Materials</u>; All the materials which are casted according to the model "if required after the forging processes" are delivered with rough machined and +2mm tolerances.


ii. <u>Centrifugally Casted Materials (Rings)</u>; the goods are delivered with +2mm tolerances after the casting.

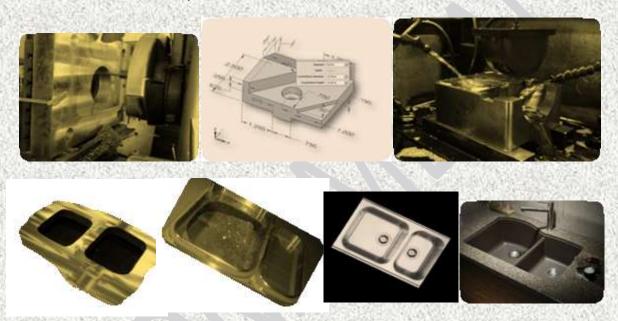


b. High Conductivity Copper Alloys;

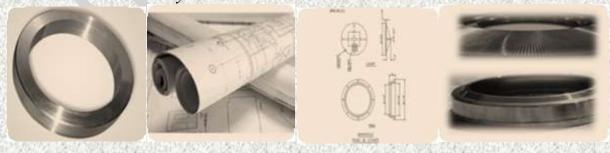
i. Continuous Casted Materials; the goods are delivered as

+2mm tolerances after the quality control processes (if the tolerance is not shown on the order form) which are applied

before continuous casted, hot forged, heat treatment etc processes.


6

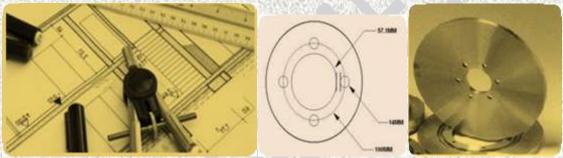
TRONA METAL Sümer Mahallesi 29/11 Sk.N.1 Zeytinburnu İstanbul/TURKEY
Tel.+90 212 416 04 03 Fax.+90 212 416 02 31 basar.unal@trona.com.tr www.tronametal.com


C. Final Machining;

a. Aluminum Bronzes;

i. <u>Sand or Die Casted Materials</u>; when the goods rough machined after casting processes; we can also final machine them with our CNC machines according to the drawing if required before delivery.

ii. <u>Centrifugally Casted Materials (Rings)</u>; rough machined materials with +2mm tolerances after the centrifugally casting method, if required final machine processes will be done before delivery.



b. High Conductivity Copper Alloys

i. Continuous Casted Materials; when the goods continuous

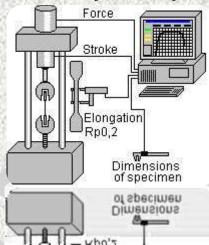
casted, forged, heat treated and rough machined; if required we can machine them to the final sizes "according to the drawing"

with our CNC machines before delivery.

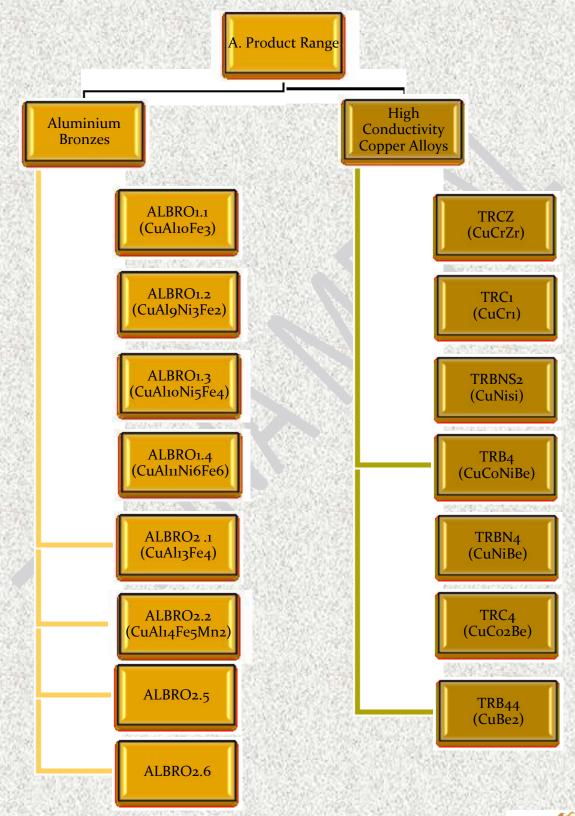
D. Quality Control;

a. <u>Chemical Analyzing Test</u>; . Some samples are being used before and after the production for chemical analyze with the usual methods.

- b. <u>Dimension Control</u>; All materials are delivered as rough machined or according to the drawing. If the order sent by rough machined and without tolerances; we use +2mm tolerances. Quality control department do not send the non approved goods after the dimension control.
- c. <u>Hardness Test</u>; All the orders are produced between the top and bottom hardness values of the world standards. If the special requirements near to top or bottom values of hardness; it is possible to produce for us.



d. <u>Ultrasonic Control</u>; All the products are delivered after the ultrasonic control.



- e. <u>Penetration Test</u>; Penetration tests are mandatory for us before shipment as ultrasonic control too.
- f. <u>Physical Analyzing Test</u>; If the physical analyzing test report (includes the tensile strength, yield strength etc) required; we can also ensure them from out of our factory.

E. Product Range;

11 TRONA METAL Sümer Mahallesi 29/11 Sk.N.1 Zeytinburnu İstanbul/TURKEY

TRONA

F. Physical & Mechanical Properties of Aluminum Bronzes;

DAY TO DA KEEP IN THOUGH A COMMON SECURIOR OF THE DAY TO A KEEP IN	THE PARTY OF STREET STREET	OCCUPATION.	The Control of the Co	Children Chamber Co. S.	SCORE MEDITAL	A TAILOR TO LA TRAIN	\$6.75 (American)	CONTRACTOR
	ALBRO1.1	ALBRO1.2	ALBRO1.3	ALBRO1.4	ALBRO2.1	ALBRO2.2	ALBRO2.5	ALBRO2.6
Density (Kg/dm3)	7,45		7,6		7,25	7,02	6,95	6,9
Tensile Strenght (Rm) N/mm² "SCRM"	610-720				520	580	1510	1510
Tensile Strenght (Rm) N/mm ² "CCRM"	650-760	700	640	750	550	580	1545	1600
Tensile Strenght (Rm) N/mm² "FRM"	620-730			H.T 830	720	620	1575	1615
Yield Strenght (Rp 0,2) N/mm ² "SCRM"	310-350				390	485	675	680
Yield Strenght (Rp 0,2) N/mm ² "CCRM"	320-390	350	270	450	385	485	680	685
Yield Strenght (Rp 0,2) N/mm² "FRM"	280-310			H.T 590	400	525	700	710
Elongation (A5) % "SCRM"	12-16				1,5	0,5		
Elongation (A5) % "CCRM"	12-16	12	15	5	1,5	0,5		
Elongation (A5) % "FRM"	13-15			(H.T) 3	1	0,5		
Hardness (HB 30) "SCRM"	160-180				280	325	360	415
Hardness (HB 30) "CCRM"	180-210	160	180	>185	285	330	370	420
Hardness (HB 30) "FRM"	190-230			(H.T) >220	295	340	380	425
Thermal Conductivity (W/m.K)	59-63		40		44	42	32	32
A STATE OF THE PROPERTY OF THE								

SCRM: Sand Cast + Rough Machine, CCRM: Centrifugally Cast + Rough Machine, FRM: Forge + Rough Machine, HT= Heat Treatment

G. Phys. & Mech. Properties of High Conductivity Copper Alloys;

THE COUNTY OF THE PROPERTY OF THE PARTY OF T	DIAYCE A VENEZA		CALCIDATE AND C			CHARLES CHORD TO THE	
	TRB4	TRB44	TRC1	TRCZ	TRC4	TRBNS2	TRBN4
Density (Kg/dm3)	8,85	8,5	8,96	8,96	8,86	8,7	8,86
Tensile Strenght (Rm) N/mm²	650-800	1150-1250	320-380	350-440	650-800	500-700	640-760
Yield Strenght (Rp 0,2) N/mm ²	500-700	900-1100	230-290	300-350	500-700	450-600	500-650
Elongation (A5) %	Min.8	Min.2	Min.12-18	Min.8-15	Min.5	Min.5	Min.8
Hardness (HB 30)	220-250	36-42HRC	120-135	100-160	230-280	180-210	240-280
Thermal Conductivity (W/m.K)	210-320	110-150	323,6	320	210-240	160	210-310

HT= Heat Treatment

12

TRONA METAL Sümer Mahallesi 29/11 Sk.N.1 Zeytinburnu İstanbul/TURKEY
Tel.+90 212 416 04 03 Fax.+90 212 416 02 31 basar.unal@trona.com.tr www.tronametal.com

H. Technical Data Sheets of Aluminum Bronzes;

ALBRO 1.1 technical datasheet

CHEMICAL COMPOSITION								
Cu	Cu Zn Al Fe Ni Mn Other							
Rest 10,5 3,5 0,5								

MECHANICAL PROPORTIES							
Production Method	SCRM	CCRM	FRM				
Tensile Strenght (Rm) N/mm²	610-720	650-760	620-730				
Yield Strenght (Rp 0,2) N/mm²	310-350	320-390	280-310				
Elongation (A5) %	12-16	12-16	13-15				
Hardness (HB 30)	160-180	180-210	190-230				
Elastic Modulus 115 x 103 N/ mm²							
*** SCRM: Sand Cast R.M, CCRM: Centrifugally Cast R.M, FRM: Forged & Rouh Machined							

DESRIPTION OF MATERIAL						
This Alluminium Bronze, contains approximately 10,50% Alluminium, 3,50%						
Iron. It has a good deformation and wear resistance with good sliding						
properties under load.						

PHYSICAL PROPORTIES						
Density	: 7,45 g/ cm³					
Specific Heat	: 0,42 j/g.k					
Electrical Conductivity	: 8 MS/ m					
Electrical Conductivity (I.A.C.S.)	: 14 %					
Termal Conductivity	: 59-63 W/ m.K					
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K					

APPLICATIONS

It uses as gears, bearings bushings, part of plastic injection moulds.

ALBRO 1.2 technical datasheet (DIN:2,0971)

CHEMICAL COMPOSITION								
Cu	Cu Zn Al Fe Ni Mn Other							
Rest 9 2,5 3 1								

MECHANICAL PROPORTIES							
Production Method	SCRM	CCRM	FRM				
Tensile Strenght (Rm) N/mm²			700				
Yield Strenght (Rp 0,2) N/mm²	V/mm² 350						
Elongation (A5) %			12				
Hardness (HB 30)			160				
Elastic Modulus 115 x 103 N/ mm²							
*** SCRM: Sand Cast R.M, CCRM: Centrifugally Cast R.M, FRM: Forged & Rouh Machined							

DESRIPTION OF MATERIAL
This Alluminium Bronze, contains approximately 9,00% Alluminium, 2,50% Iron and 3,00% Nickel. It has a good deformation and wear resistance with good sliding properties under load.

PHYSICAL PROPORTIES				
Density	: 7,45 g/ cm³			
Specific Heat	: 0,42 j/g.k			
Electrical Conductivity	: 8 MS/ m			
Electrical Conductivity (I.A.C.S.)	: 14 %			
Termal Conductivity	: 59-63 W/ m.K			
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K			

APPLICATIONS

It uses as gears, bearings bushings, part of plastic injection moulds.

ALBRO_{1.3}

technical datasheet (DIN:2,0966)

CHEMICAL COMPOSITION									
Cu	Cu Zn Al Fe Ni Mn Other								
Rest	Rest 10,5 4 5 0,8								

MECHANICAL PROPORTIES						
Production Method	SCRM	CCRM	FRM			
Tensile Strenght (Rm) N/mm²		640	i			
Yield Strenght (Rp 0,2) N/mm²		270	<u> </u>			
Elongation (A5) %		15	i			
Hardness (HB 30)		180	i			
Elastic Modulus 115 x 10 ³ N/ mm ²						

DESRIE	TION C	OF MAT	FRIAL

This Alluminium Bronze, contains approximately 10,50% Alluminium, 4,00% Iron and 5,00% Nickel. It has a good deformation and wear resistance with good sliding properties under load.

PHYSICAL PROPORTIES					
Density	: 7,60 g/ cm³				
Specific Heat	: 0,42 j/g.k				
Electrical Conductivity	: 8 MS/ m				
Electrical Conductivity (I.A.C.S.)	: 14 %				
Termal Conductivity	: 59-63 W/ m.K				
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K				

APPLICATIONS

It uses as gears, bearings bushings, part of plastic injection moulds.

ALBRO 1.4 technical datasheet (DIN:2,0978)

CHEMICAL COMPOSITION							
Cu	Cu Zn Al Fe Ni Mn Other						
Rest	Rest 11,5 6 6 0,8						

MECHANICAL PROPORTIES					
Production Method	SCRM	CCRM	FRM+HT		
Tensile Strenght (Rm) N/mm²		750	830		
Yield Strenght (Rp 0,2) N/mm²		450 590			
Elongation (A5) %		5 3			
Hardness (HB 30) >185 >2					
Elastic Modulus 115 x 10 ³ N/ mm ²					

DESRIPTION OF MATERIAL

This Alluminium Bronze, contains approximately 10,50% Alluminium, 6,00% Iron and 6,00% Nickel. It has a good deformation and wear resistance with good sliding properties under load.

PHYSICAL PROPORTIES				
Density	: 7,60 g/ cm³			
Specific Heat	: 0,42 j/g.k			
Electrical Conductivity	: 8 MS/ m			
Electrical Conductivity (I.A.C.S.)	: 14 %			
Termal Conductivity	: 59-63 W/ m.K			
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K			

APPLICATIONS

It uses as gears, bearings bushings, part of plastic injection moulds.

ALBRO2.1 technical datasheet

CHEMICAL COMPOSITION						
Cu Zn Al Fe Ni Mn Other						
Rest		13,15	4,25		0,5	

MECHANICAL PROPORTIES					
Production Method	SCRM	CCRM	FRM		
Tensile Strenght (Rm) N/mm²	520	550	720		
Yield Strenght (Rp 0,2) N/mm²	390	385	400		
Elongation (A5) %	1,5	1,5	1		
Hardness (HB 30)	280	285	295		
Elastic Modulus 105 x 103 N/ mm²					
*** SCRM: Sand Cast R.M, CCRM: Centrifugally Ca	st R.M, FRM: F	orged & Rouh	Machined		

	ATERIAL

This Alluminium Bronze, contains approximately 13,00% Alluminium, 4,00% Iron. It has better hardness and mechanical proporties than ALBRO1.

PHYSICAL PROPORTIES					
Density	: 7,25 g/ cm³				
Specific Heat	: 0,42 j/g.k				
Electrical Conductivity	: 6 MS/ m				
Electrical Conductivity (I.A.C.S.)	: 10 %				
Termal Conductivity	: 44 W/ m.K				
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K				

APPLICATIONS

This alloy uses for metal forming in stainless steel industry as a mould and insert part, rollers for bending pipes.

ALBRO2.2 technical datasheet

CHEMICAL COMPOSITION						
Cu Zn Al Fe Ni Mn Other						
Rest 13,65 4,95 2						

MECHANICAL PROPORTIES						
Production Method SCRM CCRM FRM						
Tensile Strenght (Rm) N/mm²		580	580	620		
Yield Strenght (Rp 0,2) N/mm²		485	485	525		
Elongation (A5) %]	0,5	0,5	0,5		
Hardness (HB 30)		325	330	340		
Elastic Modulus 103 x 103 N/ mm²						
*** SCRM: Sand Cast R.M, CCRM: Centrifugal	ly Cas	R.M, FRM: F	orged & Rouh	Machined		

DESRIPTION OF MATERIAL			
	DESCRIPTI	ON OF I	MATERIAL

This Alluminium Bronze, contains approximately 13,5% Alluminium, %5 Iron, 2% Manganeze. It has good hardness, wear resistance and sliding proporties.

PHYSICAL PROPORTIES				
Density	: 7,02 g/ cm³			
Specific Heat	: 0,42 j/g.k			
Electrical Conductivity	: 6 MS/ m			
Electrical Conductivity (I.A.C.S.)	: 10 %			
Termal Conductivity	: 42 W/ m.K			
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K			

APPLICATIONS

Deep drawing, Rollers for bending pipes, fricition plates and different parts in plastic injection

15

ALBRO 2.5 technical datasheet

CHEMICAL COMPOSITION						
Cu	Zn	Al	Fe	Ni	Mn	Other
Rest	-	-	-	-	-	-

MECHANICAL PROPORTIES						
Production Method	SCRM	CCRM	FRM			
Tensile Strenght (Rm) N/mm²	1510	1545	1575			
Yield Strenght (Rp 0,2) N/mm²	675	680	700			
Elongation (A5) %	-	-	-			
Hardness (HB 30)	360	370	380			
Elastic Modulus 110 x 103 N/ mm²						
*** SCRM: Sand Cast R.M, CCRM: Centrifugally Cas	*** SCRM: Sand Cast R.M, CCRM: Centrifugally Cast R.M, FRM: Forged & Rouh Machined					

This alloy has has an excelent strength and excelent friction properties.

PHYSICAL PROPORTIES				
Density	: 6,95 g/ cm³			
Specific Heat	: 0,42 j/g.k			
Electrical Conductivity	: 4 MS/ m			
Electrical Conductivity (I.A.C.S.)	: 8 %			
Termal Conductivity	: 32 W/ m.K			
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K			

APPLICATIONS

This alloy uses in stainless steel industry for drawing die of sink, washing machine tumblers, built-in refregirator, stainless steel pots, kettles, service trays etc production.

ALBRO2.6 technical datasheet

CHEMICAL COMPOSITION						
Cu	Zn	Al	Fe	Ni	Mn	Other
Rest	-	-	-	-	-	-

MECHANICAL PROPORTIES				
Production Method	SCRM	CCRM	FRM	
Tensile Strenght (Rm) N/mm²	1510	1600	1615	
Yield Strenght (Rp 0,2) N/mm²	680	685	710	
Elongation (A5) %	-	-	-	
Hardness (HB 30)	415	420	425	
Elastic Modulus 110 x 103 N/ mm²				
*** SCRM: Sand Cast R.M, CCRM: Centrifugally Ca	st R.M, FRM: F	orged & Rouh	Machined	

DESDIDTION	OF MATERIAL

This material has high hardness level and machining processes are too hard. This material is also quite useful for deep drawing industry and it can work under the heavy loads.

PHYSICAL PROPORTIES				
Density	: 6,90 g/ cm³			
Specific Heat	: 0,42 j/g.k			
Electrical Conductivity	: 4 MS/ m			
Electrical Conductivity (I.A.C.S.)	: 8 %			
Termal Conductivity	: 32 W/ m.K			
Coefficient of Thermal Expansion	: 16,0 X 10 ⁻⁶ /K			

APPLICATIONS

This material uses in stainless steel industry for deep drawing production.

İ. Technical Data Sheets of High Conductivity Copper Alloys;

TRCZ (CuCrZr) technical datasheet

CHEMICAL COMPOSITION						
Cu	Cr	Ве	Zr	Ni	Si	Other
Rest	0,3-1,2		0,03-0,2			

SPECIFICATIONS					
DIN: 2,1293	ASTM: C18150	RWMA: CLASS II			

MECHANICAL PROPORTIES			
Tensile Strenght (Rm) N/mm²	: 350-440		
Yield Strenght (Rp 0,2) N/mm²	: 300-350		
Elongation (A5) %	: Min.8-15		
Hardness (HB 30)	: 100-160		
Elastic Modulus	: 120 x 103 N/ mm²		

DESRIPTION OF MATERIAL

CuCrZr contains; approximately 1% Chromium and 0,1% Zirconium. This alloy has good hardness and high electrical and thermal conductivity after forging and heat treatment processes.

PHYSICAL PROP	ORTIES
Density	: 8,96 g/ cm³
Specific Heat	: 0,38 j/g.k
Electrical Conductivity	: 49-59 MS/ m
Electrical Conductivity (I.A.C.S.)	: 70-76 %
Termal Conductivity	: 320 W/ m.K
Coefficient of Thermal Expansion	: 20-100 °C 17,0 X 10-6 /K
Working Temparature	: 500 °C maks.

APPLICATIONS

It uses as spot welding electrodes, electrode holders and seam welding discs in resistance welding, electrodes for spark erosion, moulds for continuous casting of steel and aluminium, electrical components working under mechanical stress and dies working under low pressure in casting of non ferrous metals.

TRC1 (CuCr1) technical datasheet

CHEMICAL COMPOSITION						
Cu	Cr	Be	Zr	Ni	Si	Other
Rest	0,3-1,2		,			

SPECIFICATION	s
ASTM: C18200	RWMA: CLASS II

MECHANICAL PROPORTIES			
Tensile Strenght (Rm) N/mm²	: 320-380		
Yield Strenght (Rp 0,2) N/mm²	: 230-290		
Elongation (A5) %	: Min.12-18		
Hardness (HB 30)	120-135		
Elastic Modulus	: 130 x 10* N/ mm*		

DESRIPTION OF MATERIAL

CuCr1 contains; approximately 1% chromium and it has high conductivity and better mechanical properties than pure copper with fairly good conductivity. After forging and heat treating, it is possible to have better hardness and mechanical properties.

PHYSICAL PROPORTIES			
Density	: 8,96 g/ cm²		
Specific Heat	; 0,38 j/g.k		
Electrical Conductivity	: 49-51 MS/ m		
Electrical Conductivity (I.A.C.S.)	: 76-80 %		
Termal Conductivity	: 323,6 W/ m.K		
Coefficient of Thermal Expansion	: 20-100 °C 17,0 × 10-6 /K		
Working Temparature	: 500 °C maks.		

APPLICATIONS

t uses as resistance welding electrodes, electrode holders and seam welding discs. Current carrying arms, cable connecters, electrical and thermal conducters working under mechanics stresses.

17

TRONA METAL Sümer Mahallesi 29/11 Sk.N.1 Zeytinburnu İstanbul/TURKEY

TRBNS₂ (CuNiSi)

technical datasheet

CHEMICAL COMPOSITION						
Cu Cr Be Zr Ni Si Other						
Rest	0,3-0,5			2,2-2,6	0,5-0,7	

	SPECIFICATION	ONS
DIN: 2,0855	ASTM: C18000	RWMA: CLASS III

MECHANICAL PROPORTIES			
Tensile Strenght (Rm) N/mm²	: 500-700		
Yield Strenght (Rp 0,2) N/mm²	: 450-600		
Elongation (A5) %	: Min 5		
Hardness (HB 30)	: 180-210		
Elastic Modulus	: 131 x 10 ³ N/ mm ²		

DESRIPTION OF MATERIAL

TRBNS2 contains; approximately 2,4% Nickel,0,6 Silicium and 0,4% Chromium. This alloy gains relatively good hardness, electrical and thermal conductivity after hot forging and heat treatment processes. CuNiSi is Berylium Free and alternative to CuCoNiBe alloy.

PHYSICAL PROPORTIES			
Density	: 8,7 g/ cm³		
Specific Heat	: 0,38 j/g.k		
Electrical Conductivity	: 26-28 MS/ m		
Electrical Conductivity (I.A.C.S.)	: 45-48 %		
Termal Conductivity	: 160 W/ m.K		
Coefficient of Thermal Expansion	: 20-100 °C 17,5 X 10-6 /K		
Working Temparature	: 480 °C maks.		

APPLICATIONS

It uses as plunger tips in Aluminium injection industry to the alternative of CuCoNiBe. It uses also as cooling pins in plastic injection industry to the alternative of CuBe2 and CuCoNiBe. Moulds for casting of non-ferrous material. Chill moulds in casting of brass and bronze material. Due to its good surface quality, homogen and fast cooling rate this alloy has an excelent working performance.

TRB4 (CuCoNiBe) technical datasheet

CHEMICAL COMPOSITION						
Cu Co Be Zr Ni Si Other						
Rest	0,8-1,3	0,4-0,7		0,8-1,3		

	SPECIFICATIO	ONS
DIN: 2,1285	RWMA: CLASS III	

MECHANICAL PROPORTIES			
Tensile Strenght (Rm) N/mm²	: 650-800		
Yield Strenght (Rp 0,2) N/mm²	: 500-700		
Elongation (A5) %	: Min 8		
Hardness (HB 30)	: 220-250		
Elastic Modulus	: 135 x 10 ³ N/ mm ²		

DESRIPTION OF MATERIAL

CuCoNiBe Copper Alloy contains approximately 1% Cobalt, 1% Nickel, 0,5% Beryllium. After hot forging and heat treatment processes; this material gains considerably good hardness, grain size, electrical and thermal conductivities. It is possible to reach different combinations of electrical conductivity and hardness by changing the heat treatment conditions.

PHYSICAL PROPORTIES				
Density	: 8,85 g/ cm³			
Specific Heat	: 0,42 j/g.k			
Electrical Conductivity	: 24-30 MS/ m			
Electrical Conductivity (I.A.C.S.)	: 38-48 %			
Termal Conductivity	: 210-320 W/ m.K			
Coefficient of Thermal Expansion	: 20-100 °C 17,0 X 10-6 /K			
Working Temparature	: 480 °C maks.			

APPLICATIONS

Welding electrodes, electrode holders and seam welding discs in resistance welding. Plunger tips in Aluminium Die Casting industry. Injection nozzles, cooling inserts in plastic injection industry. Moulds for casting of non-ferrous material. Chill moulds in casting of brass and bronze material. Due to its good surface quality, homogen and fast cooling rate this alloy has an excelent working performance.

18

TRONA METAL Sümer Mahallesi 29/11 Sk.N.1 Zeytinburnu İstanbul/TURKEY

TRBN4 (CuNiBe)

technical datasheet

CHEMICAL COMPOSITION						
Cu Co Be Zr Ni Si Other						
Rest	>0,3	0,2-0,6		1,4-2,2		

	SPECIFICATION	ONS			
DIN: 2,0850 ASTM: C17510 RWMA: CLASS III					

MECHANICAL PROPORTIES			
Tensile Strenght (Rm) N/mm²	: 640-760		
Yield Strenght (Rp 0,2) N/mm²	: 500-650		
Elongation (A5) %	: Min 8		
Hardness (HB 30)	: 240-280		
Elastic Modulus	: 138 x 10 ³ N/ mm ²		

DESRIPTION OF MATERIAL

CuNiBBe copper alloy contains; approximately 0,3% Cobalt, 1,8% Nickel and 0,4% Beryllium. This material gains considerably good hardness with good electrical and thermal conductivity after hot forging and heat treatment processes.

PHYSICAL PROPORTIES				
Density	: 8,86 g/ cm³			
Specific Heat	: 0,40 j/g.k			
Electrical Conductivity	: 24-30 MS/ m			
Electrical Conductivity (I.A.C.S.)	: 34-48 %			
Termal Conductivity	: 210-310 W/ m.K			
Coefficient of Thermal Expansion	: 20-100 °C 17,0 X 10-6 /K			
Working Temparature	: 480 °C maks.			

APPLICATIONS

Welding electrodes, electrode holders and seam welding discs in resistance welding. It uses rarerly as plunger tips in Aluminium Die Casting industry. It uses also injection nozzles, cooling nserts in plastic injection industry. Moulds for casting of non-ferrous material. Chill moulds in casting of brass and bronze material. Due to its good surface quality, homogen and fast cooling rate this alloy has an excelent working performance too.

TRC4 (CuCo2Be) technical datasheet

CHEMICAL COMPOSITION						
Cu Co Be Zr Ni Si Other						
Rest	2,2-2,7	0,4-0,7		0,3		

	SPECIFICATION	ONS			
DIN: 2,1285 ASTM: C17500 RWMA: CLASS III					

MECHANICAL PROPORTIES			
Tensile Strenght (Rm) N/mm²	: 650-800		
Yield Strenght (Rp 0,2) N/mm²	: 500-700		
Elongation (A5) %	: Min 5		
Hardness (HB 30)	: 230-280		
Elastic Modulus	: 135 x 10³ N/ mm²		

DESRIPTION OF MATERIAL

CuCo2Be copper alloy contains; approximately 2,5% Cobalt, 0,3% Nickel and 0,5% Beryllium. This material gains considerably good hardness with good electrical and thermal conductivity after hot forging and heat treatment processes. It has also slightly better mechanical and physical properties than CuCoNiBe.

PHYSICAL PROPORTIES			
Density	: 8,86 g/ cm³		
Specific Heat	: 0,40 j/g.k		
Electrical Conductivity	: 24-30 MS/ m		
Electrical Conductivity (I.A.C.S.)	: 34-48 %		
Termal Conductivity	: 210-240 W/ m.K		
Coefficient of Thermal Expansion	: 20-100 °C 17,0 X 10-6 /K		
Working Temparature	: 480 °C maks.		

APPLICATIONS

Welding electrodes, electrode holders and seam welding discs in resistance welding. It uses rarerly as plunger tips in Aluminium Die Casting industry. It uses also injection nozzles, cooling inserts in plastic injection industry. Moulds for casting of non-ferrous material. Chill moulds in casting of brass and bronze material. Due to its good surface quality, homogen and fast cooling rate this alloy has an excelent working performance too.

19

TRONA METAL Sümer Mahallesi 29/11 Sk.N.1 Zeytinburnu İstanbul/TURKEY

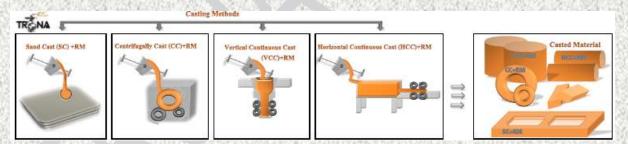
TRB44 (CuBe2) technical datasheet

CHEMICAL COMPOSITION						
Cu Co Be Zr Ni Si Other						
Ret	0,35	1,8-2,2		0,35	0,1-0,2	

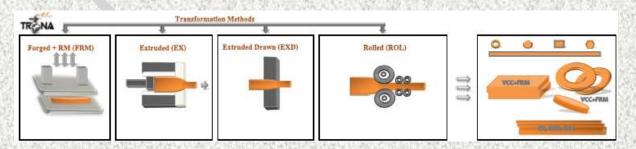
	SPECIFICATION	ONS			
DIN: 2,1247 ASTM: C17200 RWMA: CLASS IV					

MECHANICAL PROPORTIES	
Tensile Strenght (Rm) N/mm²	: 1150-1250
Yield Strenght (Rp 0,2) N/mm²	: 900-1100
Elongation (A5) %	: Min 2
Hardness (HRC)	: 36-42
Elastic Modulus	: 135 x 103 N/ mm²

DESRIPTION OF MATERIAL


CuBe2 contains; approximately 2% Beryllium, 0,6% Cobalt and Nickel. This copper alloy has considerably high mechanical properties, hardness with reasonable thermal and electrical conductivity. It is possible to reach different combinations of electrical conductivity and hardness by changing the heat treatment conditions.

PHYSICAL PROPORTIES	
Density	: 8,5 g/ cm³
Specific Heat	: 0,42 j/g.k
Electrical Conductivity	: 24-30 MS/ m
Electrical Conductivity (I.A.C.S.)	: 38-48 %
Termal Conductivity	: 110-150 W/ m.K
Coefficient of Thermal Expansion	: 20-100 °C 17,0 X 10-6 /K
Working Temparature	: 3000 °C maks.


APPLICATIONS

CuBe uses as resistance welding electrodes in manufacturing of steel wheels, non-sparkling safety tools, comosion resistant, anti magnetic and high strenght bushings . Mould plates and cooling inserts in plastic injection industry.

J. Casting Methods;

K. Transformation Methods;

TRONA

20

TRONA METAL Sümer Mahallesi 29/11 Sk.N.1 Zeytinburnu İstanbul/TURKEY